
 How package managers empower 
software users

Distributing Freedom



Before package managers...
● Most computer 

systems were time-
sharing mainframes 
or minicomputers

● A ‘sysadmin’ (system 
administrator) would 
manually install 
software from tapes DEC PDP-10



Before package managers...
● Software was distributed as a tar – ‘Tape 

Archive’ – of source code
● The source files were extracted, compiled and 

linked together on the machine
● On UNIX and Linux operating systems, the 

compiled files were put in /usr/local/



The first package managers
● Personal computers had no 

system administrator!
● Package managers allowed 

PC users to install, update and 
remove software easily

IBM 5150



The first package managers

1993: Bogus Linux pms
1994: FreeBSD pkg_* suite

1994: Debian dpkg
1995: Red Hat RPM

1999: Gentoo Portage



Fundamental features
● Installing software
● Removing software
● Listing information about installed packages
● Searching for and downloading software from 

the internet
● Automatic dependency resolution...



● Applications usually 
need libraries to run

● Virtual packages 
allow choosing 
among multiple 
compatible versions

Automatic dependency resolution



● Gradual improvements to 
existing package managers

● Alpine Linux and Arch Linux 
create package managers similar 
to those of FreeBSD and NetBSD

● Package managers come to 
mobile devices

Package managers post-millennium

Nokia N9



Proprietary package managers

2008: Apple App Store
2008: Android Market

2009: Ninite for Windows
2011: Windows Store

2012: Google Play



● App stores encouraged developers to ‘give 
away’ their software, or sell it very cheaply

● To keep profits up, further disruptive 
functionality emerged in proprietary software
– Pay-to-win games
– Adverts in applications
– Privacy-limiting analytics

Proprietary package managers



Proprietary package managers
Most proprietary app stores are technically limited!

What package managers could provide users:
● Stability
● Free licensing
● Security
● Ease of use



User empowerment: Stability
● Automatic dependency resolution gets the right 

packages, and uninstalls packages that are no 
longer needed

● Users can easily remove faulty packages
● Allows the user to ‘roll back’ to a previous 

working version



User empowerment: Free licensing
● Package managers display information about the 

software’s licence
● Distributions’ repositories have licensing policies

– Debian Free Software Guidelines
– Fedora ‘Good’ List

● SPDX License Identifiers reduce complexity of 
different licences 



User empowerment: Security
● Cryptographic signing ensures that packages 

are authentic and undamaged
● Package-level signatures alleviate the need for 

HTTPS; HTTPS can still be used for anonymity
● Software with known vulnerabilities can be 

updated automatically



User empowerment: Ease of use
● Users can discover 

software from large 
repositories

● Graphical user 
interfaces make 
common usage 
simpler

GNOME Software



The future of package managers
Package management has so much left to be explored!

There is active development in the fields of:
● Remote control across devices
● Application containerisation
● Declarative package management
● Supply chain security



The future: Remote control
● Remote access for all 

devices
– Smart televisions 
– Mobile devices
– Home appliances

● One place to securely 
update all devices Cockpit web interface



The future: Application containers
● Containers allow the separation of programs

– Sandboxing keeps users’ data private from 
snooping software

– Allows the user to run usually conflicting software 
simultaneously

● Current technologies include Flatpak and OCI 
(Open Container Initiative) runtimes



The future: Declarative management
● The packages for a system are declared 

together, rather than being installed one by one
● Allows easy migration between physical 

machines or installation across many machines
● Nix, GNU Guix and Fedora Silverblue are 

leading examples



The future: Supply chain security
● Deep dependency trees can conceal vulnerable 

code, allowing problematic packages to spread
● Automated security audits can be combined with 

Software Bill of Materials (SBOM) to alert users 
of potential problems

● Provenance data and Attestations ensure that 
packages were built securely



Image credits
● Title picture – Nathan O'Nions, CC-BY-2.0
● PDP-10 at the Seattle Living Computer Museum – Jason Scott, CC-

BY-2.0
● IBM Model 5150 – Rama & Musée Bolo, CC-BY-SA-2.0 (France)
● Nokia N9 – Animist, CC-BY-SA-3.0
● GNOME Software – GPL-2.0-or-later
● Closing picture – Solomon203, CC-BY-SA-3.0 (modified from the 

original)
● LibrePlanet 2022 Logo – Free Software Foundation, CC-BY-SA-4.0




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

